
Semi-Automated Translation of a Formal ISA Specification to
Hardware

Harlan Kringen, Zachary Sisco, Jonathan Balkind, Timothy Sherwood, Ben Hardekopf
{kringen,zsisco,jbalkind,tpsherwood,hardekbc}@ucsb.edu

UC Santa Barbara, USA

ABSTRACT
Software compiler engineers target ISAs so that compiled machine
code can run on a common platform and is correct and as efficient
as possible. On the other hand, hardware engineers target ISAs
so that their processors can support certain classes of software.
This separation of duties is problematic because it deepens the
difficulties of verifying correctness from compiled code down to
its hardware. We see an opportunity to alleviate these concerns
by automating this passage from ISA to hardware. The challenge
is that verification and automation tooling for ISAs and hardware
description languages (HDLs) have tended to treat implementation
effects, such as state, exceptions, and non-determinism, in a variety
of different ways, not to mention, these tools can be spread across
the imperative/functional language spectrum. By concentrating on
tools which originate in the functional programming space, we
observe that a simple (unoptimized), functionally correct hardware
implementation for a processor may be derived in a straightforward
manner from the ISA’s formal specification. We propose a proof of
concept for translating formal ISA specifications to valid hardware
implementations, e.g. in Verilog, in a single software pipeline.

1 OVERVIEW
Our proof of concept is rooted in functional representations of ISAs
and synchronous, sequential hardware and leverages existing tool-
ing in the formal design space. Specifically, we use the Sail language,
an imperative DSL, to write ISAs [2, 3]. Sail allows formally speci-
fying an ISA with support for conventional architectural patterns
such as “fetch”, “decode”, and “execute”. From this specification
we use Sail’s Coq backend to extract functional representations of
the ISA methods. This Coq backend represents instructions which
use register and memory effects as functions running in the state
monad while all other instructions without effects are pure and can
be lifted into the appropriate monad.

To obtain hardware that targets this ISA, we utilize the hardware
description language C𝜆asH [4], a functional DSLwritten in Haskell
which compiles hardware descriptions into Verilog. C𝜆asH code
is based on a top-level abstraction of a Mealy machine. A Mealy
machine describes a sequential circuit element which consists of
some combinational logic as well as some state information which
is looped back into the combinational logic. As noted in [11, 13],
Mealy machines are instances of arrows. Arrows are similar to mon-
ads but are only capable of describing data flow graphs (functions
tiled in parallel, sequence, feedback), lacking the level of control
flow manipulation afforded by arbitrary monads [12]. The monad,
arrow, and Mealy machine types may all be seen in Figure 1. Hav-
ing canvassed Sail and C𝜆asH, we visualize our proof of concept
in Figure 2.

1 -- the monad typeclass

2 class Monad M where

3 (>>=) :: M A → (A → M B) → M B

4 return :: M → M A

5
6 -- the Arrow typeclass, suitable for describing data flow graphs

7 class Arrow A where

8 pure :: (B → C) → A B C

9 (>>>) :: A B C → A C D → A B D

10 first :: A B C → A (B × D) (C × D)

11
12 -- Arrows can be extended with a recursion operator; the D type captures

13 -- the state that is fed back while B and C are the input/output types

14 class Arrow A ⇒ ArrowLoop A

15 loop :: A (B × D) (C × D) → A B C

16
17 -- a simplified version the of Mealy machine used in C𝜆asH

18 Mealy :: (S → I → (S × O) -- dynamics

19 → S -- current state

20 → Stream I -- input stream

21 → Stream O -- output stream

Figure 1: The monad, arrow, and Mealy machine types form
a foundation for functional programming approaches for
hardware description and design.

Building a CPU in C𝜆asH closely follows the same format as
Sail methods in the ISA. The user defines types for machine word
lengths, instructions, registers, as well as functions for fetching,
decoding, and executing instructions. It is this similarity we are
exploring with our single software pipeline. The trick is to convert
a monadic representation of RISC-style ISA methods in Sail’s Coq
DSL to an arrowized (Mealy machine) representation of RISC-style
components in C𝜆asH. To this end, we observe two facts about the
Sail ISA code.

First, the ISA instructions typically have register and memory
responsibilities for architecture-level state. Sail describes “fetch”,
“read-register”, “write-register”, etc. methods as maps of the follow-
ing form , where 𝑘 is the machine word length and𝑀 is the state
monad (or larger monad transformer stack):

(MachineWord 𝑘) → 𝑀 (MachineWord 𝑘),
Second, these methods have a common form which is often

termed, “Kleisli maps”. In fact, Kleisli maps are themselves instances
of the arrow type. This fact has been explored extensively in the
Yampa and Dunai languages used in functional reactive program-
ming [15], in the form of “monadic stream functions” (MSFs), which
are shown in Figure 3. MSFs effectively parameterize Mealy ma-
chines with a monad (or monad transformer stack) to utilize side
effects. MSFs consume inputs, running their computations inside
the given monad, and output a monadic value as well as a con-
tinuation for future processing. This creates a type which enjoys
all of the composition capabilities of arrows, the stateful, infinite
stream processing of Mealy machines, and the effectful nature of
the monad.



Harlan Kringen, Zachary Sisco, Jonathan Balkind, Timothy Sherwood, Ben Hardekopf

1. Sail (ISA) 2. Sail Coq backend 3. Monadic Effects to
Arrow Effects Conversion 4. C𝜆asH Haskell HDL 5. Verilog

Figure 2: The software pipeline begins with an ISA written in Sail. We extract Sail’s Coq representation, functional code
embedded in the state monad. We convert the monadic version to an arrowized version, essentially a Mealy machine. This is
then translated into the C𝜆asH HDL, which is then automatically compiled to Verilog.

1 -- Monadic Stream Functions generalize arrows by allowing effects;

2 -- bear a close type-level resemblance to Mealy machines' dynamics

3 data MSF M A B ⇒ Monad M = MSF (A → M (B × MSF M A B))

4
5 -- instantiating types, we can describe an arrowized version

6 -- of Sail's 8-bit ``read register'' function

7 readReg :: 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑊𝑜𝑟𝑑 8 → State (𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑊𝑜𝑟𝑑 8)
8 readRegArrow :: MSF State (𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑊𝑜𝑟𝑑 8) (𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑊𝑜𝑟𝑑 8)
9
10 -- a fragment of the C𝜆asH code required to synthesize hardware designs;

11 -- our compiler pass takes the derived MSFs to the C𝜆asH Mealy type, in

12 -- this case via the helper function, MSF2Mealy

13 topEntity

14 :: Clock System

15 -> Reset System

16 -> Enable System

17 -> Signal System (Signed 9, Signed 9)

18 -> Signal System (Signed 9)

19 topEntity = exposeClockResetEnable (MSF2MealyMachine readRegArrow)

Figure 3: We can pass from monadic effects to monadic
stream functions and directly target the C𝜆asH DSL.

Based on this information, we can perform a compiler pass over
the Sail state monad which takes it to its corresponding monadic
stream function State (Stream (Word 𝑁 )) (Stream (Word 𝑀)).
Because MSFs are Arrows, and moreover, they are ArrowLoops,
they can be translated into the Mealy machine type used in C𝜆asH.
The main “execute” method emitted in Sail is converted to C𝜆asH’s
“topEntity” while all helper functions are translated into compos-
able Mealy machines. We make several additions to incorporate
C𝜆asH’s system of clocks, enable signals, and custom bitvector
types, however, these are largely unproblematic. The translation
results in C𝜆asH code that looks nearly identical to what a single-
cycle CPUwould look like written directly in C𝜆asH and is sketched
in Figure 3.

This translation works straightforwardly for single-cycle, syn-
chronous hardware. Many microarchitecures, however, can be mul-
ticycle and asynchronous and can have various optimizations that
are invisible at the ISA level. For instance, the number of read and
write ports, as well as their latencies on register files and memories,
can be customized for hardware. This is, however, never repre-
sented at the ISA level. These are design choices we would like
to explore unifying. An instruction at the ISA level can imply a
hardware implementation consisting of registers, memory, caches,
etc., and so it is important to determine what information can be
helpfully included in the ISA which could form a tighter connection
to an actual implementation.

2 PRELIMINARYWORK
The main contributions of this work are:

(1) The compiler pass that converts Sail’s Coq backend into an
arrowized Mealy machine;

1 (* Instruction encoding and decoding *)

2 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

3 <-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

4 mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_XOR)

5 <-> 0b0000000 @ rs2 @ rs1 @ 0b100 @ rd @ 0b0110011

6
7 (* Specifies execute behavior for ADD and XOR *)

8 function execute (RTYPE(rs2, rs1, rd, op)) = {

9 let rs1_val = X(rs1); let rs2_val = X(rs2);

10 let result : xlenbits = match op {

11 RISCV_ADD => rs1_val + rs2_val,

12 RISCV_XOR => rs1_val ^ rs2_val,

13 };

14 X(rd) = result

15 }

Figure 4: A subset of R-type instructions from the RISC-V ISA
specified in Sail [3]. Architectural registers are accessed/up-
dated from X().

(2) The compiler pass that takes the arrowized Mealy machine into
C𝜆asH’s particular DSL;

(3) Establishing formal criteria for correctness of the translations.
In terms of the first two contributions, we have converted Sail

specifications to monadic code, extracted the Coq code into sensible
Haskell code, annotated the extracted code into C𝜆asH’s DSL, and
finally, confirmed that the C𝜆asH code produces synthesizable Ver-
ilog. We have prototyped this for single instructions (e.g., the Sail
code in Figure 4) and are working on full processor designs which
we expect to be done shortly. We are also investigating expand-
ing the processor designs to include multicycle and asynchronous
behavior. This we expect to do through the use of deeper monad
transformer stacks in our MSFs as well as augmenting our functions
with timing information, similar to [8].

As for the third contribution, we have begun working on express-
ing correctness criteria using a predicate transformer semantics
implementing pre- and post-conditions. We are roughly following
past work such as [1, 14] and are using a refinement-like DSL in
Coq, although we are also looking into [10] as a similar tool which
focuses on correctness proofs of Bluespec-like designs. Our use
of a refinement calculus allows us to prove that our translation
from monadic to arrowized effects preserves the original, intended
behavior. We are additionally interested in using a refinement-style
framework to derive correct hardware descriptions as opposed to
proving code correctness after the code has already been writ-
ten. Finally, we are looking forward to connecting our work to
current research that also explores formally verified ISAs and hard-
ware description languages through the use of interactive theorem
provers [5–7, 9].

REFERENCES
[1] João Alpuim and Wouter Swierstra. 2017. Embedding the refinement calculus in

Coq. Science of Computer Programming 164 (05 2017). https://doi.org/10.1016/j.
scico.2017.04.003

https://doi.org/10.1016/j.scico.2017.04.003
https://doi.org/10.1016/j.scico.2017.04.003


Semi-Automated Translation of a Formal ISA Specification to Hardware

[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Shaked Flur, Kathryn E.
Gray, Prashanth Mundkur, Robert M. Norton, Christopher Pulte, Alastair Reid,
Peter Sewell, Ian Stark, and Mark Wassell. 2018. Detailed Models of Instruction
Set Architectures: From Pseudocode to Formal Semantics. In Proc. Automated
Reasoning Workshop. 23–24. Two-page abstract.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.
ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM SIG-
PLAN Symposium on Principles of Programming Languages. https://doi.org/10.
1145/3290384 Proc. ACM Program. Lang. 3, POPL, Article 71.

[4] C. Baaij. 2009. C𝜆asH : from Haskell to hardware. http://essay.utwente.nl/59482/
[5] Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Pratap Singh,

Andrew Wright, and Adam Chlipala. 2022. Flexible Instruction-Set Semantics
via Type Classes. arXiv:2104.00762 [cs.LO]

[6] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 243–257. https://doi.org/10.1145/3385412.3385965

[7] Thomas Braibant and Adam Chlipala. 2013. Formal Verification of Hardware
Synthesis. In Computer Aided Verification, Natasha Sharygina and Helmut Veith
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 213–228.

[8] Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with type-level clocks. ACM
SIGPLAN Notices 53 (09 2018), 145–157. https://doi.org/10.1145/3299711.3242757

[9] Adam Chlipala. 2017. Strong Formal Verification for RISC-V: From Instruction-
Set Manual to RTL. https://riscv.org/wp-content/uploads/2017/12/Wed-1454-
RISCV-AdamChlipala.pdf. Accessed: 2023–04-26.

[10] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. 2017. Kami: A Platform for High-Level Parametric Hardware
Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP,
Article 24 (aug 2017), 30 pages. https://doi.org/10.1145/3110268

[11] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2018. Pi-Ware:
Hardware Description and Verification in Agda. In 21st International Conference
on Types for Proofs and Programs (TYPES 2015) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 9:1–9:27. https://doi.org/10.4230/
LIPIcs.TYPES.2015.9

[12] Sam Lindley. 2014. Algebraic Effects and Effect Handlers for Idioms and Arrows.
In Proceedings of the 10th ACM SIGPLAN Workshop on Generic Programming
(Gothenburg, Sweden) (WGP ’14). Association for Computing Machinery, New
York, NY, USA, 47–58. https://doi.org/10.1145/2633628.2633636

[13] Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal Commutative Arrows and
Their Optimization. SIGPLAN Not. 44, 9 (aug 2009), 35–46. https://doi.org/10.
1145/1631687.1596559

[14] Thomas F. Melham. 1988. Abstraction Mechanisms for Hardware Verification.
Springer US, Boston, MA, 267–291. https://doi.org/10.1007/978-1-4613-2007-4_9

[15] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional Reactive
Programming, Refactored. SIGPLAN Not. 51, 12 (sep 2016), 33–44. https://doi.
org/10.1145/3241625.2976010

https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
http://essay.utwente.nl/59482/
https://arxiv.org/abs/2104.00762
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3299711.3242757
https://riscv.org/wp-content/uploads/2017/12/Wed-1454-RISCV-AdamChlipala.pdf
https://riscv.org/wp-content/uploads/2017/12/Wed-1454-RISCV-AdamChlipala.pdf
https://doi.org/10.1145/3110268
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1145/1631687.1596559
https://doi.org/10.1145/1631687.1596559
https://doi.org/10.1007/978-1-4613-2007-4_9
https://doi.org/10.1145/3241625.2976010
https://doi.org/10.1145/3241625.2976010

	Abstract
	1 Overview
	2 Preliminary Work
	References

